Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium.

نویسندگان

  • Stephan Gromer
  • Jurgen H Gross
چکیده

Biochemical and clinical evidence indicates that monomethylated selenium compounds are crucial for the tumor preventive effects of the trace element selenium and that methylselenol (CH(3)SeH) is a key metabolite. As suggested by Ganther (Ganther, H. E. (1999) Carcinogenesis 20, 1657-1666), methylselenol and its precursor methylseleninate might exert their effects by inhibition of the selenoenzyme thioredoxin reductase via the irreversible formation of a diselenide bridge. Here we report that methylseleninate does not act as an inhibitor of mammalian thioredoxin reductase but is in fact an excellent substrate (K(m) of 18 microm, k(cat) of 23 s(-1)), which is reduced by the enzyme according to the equation 2 NADPH + 2 H(+) + CH(3)SeO(2)H --> 2 NADP(+) + 2 H(2)O + CH(3)SeH. The selenium-containing product of this reaction was identified by mass spectrometry. Nascent methylselenol was found to efficiently reduce both H(2)O(2) and glutathione disulfide. The implications of these findings for the antitumor activity of selenium are discussed. Methylseleninate was a poor substrate not only for human glutathione reductase but also for the non-selenium thioredoxin reductases enzymes from Drosophila melanogaster and Plasmodium falciparum. This suggests that the catalytic selenocysteine residue of mammalian thioredoxin reductase is essential for methylseleninate reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Protein disulphide-isomerase: a homologue of thioredoxin implicated in the biosynthesis of secretory proteins.

and have a tendency to aggregate, indicating that formation of a second disulphide in the molecule is accompanied by denaturation of the structure. Reduction of oxidized thymus thioredoxin can be achieved by dithiothreitol or by NADPH and thioredoxin reductase representing a possible autocatalytic control mechanism. Another major difference between the mammalian and the E. coli thioredoxin syst...

متن کامل

Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme.

Thioredoxin reductases (TrxRs) from mammalian cells contain an essential selenocysteine residue in the conserved C-terminal sequence Gly-Cys-SeCys-Gly forming a selenenylsulfide in the oxidized enzyme. Reduction by NADPH generates a selenolthiol, which is the active site in reduction of Trx. The three-dimensional structure of the SeCys498Cys mutant of rat TrxR in complex with NADP(+) has been d...

متن کامل

Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase.

Selenium compounds like selenite (SeO3(2-) may form a covalent adduct with glutathione (GSH) in the form of selenodiglutathione (GS-Se-SG), which is assumed to be important in the metabolism of selenium. We have isolated GS-Se-SG and studied its reactions with NADPH and thioredoxin reductase from calf thymus or with thioredoxin reductase and thioredoxin from Escherichia coli. Incubation of 0.1 ...

متن کامل

Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine.

Mammalian thioredoxin reductases are selenoproteins. For native catalytic activity, these enzymes utilize a C-terminal -Gly-Cys-Sec-Gly-COOH sequence (where Sec is selenocysteine) forming a redox active selenenylsulfide/selenolthiol motif. A range of cellular systems depend upon or are regulated by thioredoxin reductase and its major protein substrate thioredoxin, including apoptosis signal-reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 12  شماره 

صفحات  -

تاریخ انتشار 2002